Developing Cabbage Plugins For Composition
and Sound Design and Sharing Them Online

Caio M. Jiacomini! *

Berklee College of Music
caiojmini@gmail.com

Abstract. In 2020 I discovered Csound. Using the Csound FLOSS Manual[1],
I started teaching myself about this amazing program. With Cabbage[2],

I realized I could make my own plugins and distribute them on the in-
ternet. My goal was to create custom tools for my own composition and
sound design work, and be able to share both my musical creations and

the tools I designed to create them. The result of this work was Vendaval,
Granulera, and Cristalera. This paper will present a detailed overview

of these Cabbage plugins, and share my experience and advice about
distributing them through the itch.io storefront.

Keywords: Csound, Cabbage, Plugins, Distribution, Granular

1 The Story Behind Vendaval, Granulera, and Cristalera

Vendaval a procedural synthesizer that algorithmically models the sound of
wind. Granulera is a synthesizer that produces aleatoric granular textures. Cristalera®
is a granular-based audio processing effect which produces glitchy textures.

Vendaval was originally designed to support the work I was doing as a sound
designer on a video game. The idea was to create a procedural synthesis algo-
rithm that would be rendered in real-time by Unreal Engine as a FMOD plugin
compiled with Cabbage. After writing the Csound code, I realized it could be
a useful tool for sound design outside of that specific project, specially if trans-
formed into a MIDI synthesizer, which I did. 2

Granulera was created for another project. I was hired to write the sound-
track for the game Apotheosis® and wanted to incorporate granular textures into
the score. Since I didn’t have access to any granular synthesizers at the time, I
decided to develop my own.

* I’d like to thank my friend Pedro Sodre for introducing me to Csound, Dr. Richard
Boulanger for his guidance and mentoring in writing this paper, and Rory Walsh for
his crucial support in the Cabbage forum during the development of these plugins.

! Links to download all three plugins are included in the references section.

2 Before learning Csound I was very new to coding. Cabbage is what inspired me to
learn Csound in order to make plugins and procedural audio within game engines. I
owe a great deal of gratitude to Rory Walsh for developing such an inspiring program.

3 A free demo of the game can be downloaded here: https://store.steampowered.
com/app/1752030/Apotheosis/

https://store.steampowered.com/app/1752030/Apotheosis/
https://store.steampowered.com/app/1752030/Apotheosis/

2 Caio M. Jiacomini

Cristalera is essentially the DSP version of Granulera. I was producing a
song in collaboration with a friend and wanted the background vocals to have
the same granular textures I achieved with Granulera. Cristalera employs the
same granulation method, but using it to process live audio input.

2 About the Plugins

2.1 Vendaval

PRESETS Save Delete V E N D A V A L

Stormy Gusts M by Caio M. Jiacomini

Global Wooing Background Gusts Rumble

Volume em— Volume § Volume el Volume ee— Volume @
Cutoff em—— Frequency = Frequency el Frequency el Cutoff e—
Attack =@ Range B Range el Distortion
Decay @ Rate [} Rate el Rate e Reverb
Sustain smm— Bandwidth = Bandwidth el Bandwidth ee=ff
Release =@ Resonance @ Resonance «==ff Resonance s

Harmony Freq [Harmony Freq @

Harmony Vol @ Harmony Vol @

Fig. 1. Vendaval’s user interface.

Vendaval works by generating noise, filtering it with a band-pass, and mod-
ulating the filter’s center frequency randomly with the jspline opcode. There’s
also a low-pass filter tuned to the same frequency as the band-pass in order to
allow the user to add resonance to the sound. The plugin has four modules that
perform different functions employing this general chain: Wooing, Background,
Gusts, and Rumble. *

The Wooing and Background modules work in the exact same way as de-
scribed above but offer different value ranges for the user, with Wooing having
the band-pass filter tuned to a higher frequency range with a narrower band-
width while the Background module has the filter tuned to a lower frequency
range with a broader bandwidth. The Gusts module applies a LFO to the filter
frequency after the spline modulation, as a way to simulate rapid gusts of wind.
The final module, Rumble, simply applies a low-pass filter to pink noise and
distorts it, allowing the cutoff frequency to be set up to 200 Hz, in order to add
a present low end for higher intensity wind soundscapes.

4 The idea for this plugin originated after reading the book Principles of Game Audio
And Sound Design [3], which describes how wind can be simulated procedurally with
filtered noise.

Developing and Distributing Plugins with Cabbage 3

The Wooing and Background modules also feature a secondary band-pass
filter that harmonizes with the first one to simulate the resonance created by
wind blowing through small holes. The user has control over the volume of the
signal that passes through that filter as well as the frequency of the harmony,
given as a multiplier of the base frequency.

The user can control each module’s volume, filter frequency, the jspline range
and rate, the bandwidth of the band-pass filter, and the low-pass resonance. The
following code shows the core design of the background module:

aNoise noise 1, 0

aNoiseBp butterbp aNoise, kCF + kJit, kBW

aNoiselLp moogladder aNoiseBp, kCF + kBW + kJit, kReson

aNoiseBpHarm butterbp aNoise * kHarmVol, (kCF + kJit) * kHarmFreq, kBW
aNoiseLpHarm moogladder aNoiseBpHarm, (kCF + kBW + kJit) * kHarmFreq, kReson
aNoiseBalanced balance aNoiseLp + aNoiseLpHarm, aNoiseBp

aBackground = (aNoiseBalanced * kVolume) * kBackgroundVolume

2.2 Granulera

GRANULERA ave (caiojm Abyss Y Delete GLOBAL

e
GRAINS MODULATION Stereo Pan ——@)

by Caio M. Jiacomini

Windowing 11z Ring Frequency Tuning .

®@ ® o o ® 6 o 0

n Grain Density Pitch Variation Phase Variation
Attack @

Decay B
e ———
Release —@

Randomization

Duration Range Density Range Freauency Rance
REVERB

FILTER F e
[. DELAY

send @
e |
Time Left

Time Right §

Feedback @

Fig. 2. Granulera’s user interface.

Granulera features three oscillators capable of producing basic waveforms, a
filter section with an ADSR envelope, reverb and stereo delay effects, an ADSR
envelope for the global amplitude, ring and frequency modulation, and LFOs for
key parameters.

The granulation of the signal was achieved by using the schedkwhen opcode
to trigger each grain individually®, allowing the stereo position of each grain

5 The design for this plugin was based on the granulation method described in chapter
3F of the Csound FLOSS Manual[1].

4 Caio M. Jiacomini

to be randomized and passed in as a p-field. The interface allows the user to
control how spread out in the stereo field the grains can be. It also offers control
over the granulation windowing shape, grain duration, grain density, as well as
control over the pitch and phase randomization range for each grain. On top of
that, the grain duration and density values, as well as the global tuning of the
instrument, are modulated randomly with the jitter opcode, with the interface
allowing control over the range and rate of the modulation.

The trickiest part of developing Granulera was making it so the filter enve-
lope’s release behaved in a natural way if the user automated the filter frequency
in the middle of the envelope. The issue was that the release stage of the enve-
lope would always start from the frequency value that was defined during the
initialization pass for the note, so if the user automated the filter frequency ei-
ther through a MIDI CC or an automation lane in a digital audio workstation,
the frequency would abruptly jump to whatever value it was set to during i-time
for the release stage. The solution was to use the changed2 opcode to detect if
the filter frequency value has been altered, using that to change the value passed
to the envelope. Here’s the excerpt of the code for this solution:

kFilterChangedTrig changed2 gkFilterFreq
kFilterChangedTrig2 init O

if kFilterChangedTrig == 1 then
kFilterChangedTrig2 = 1

endif

if release() == 0 then

if kFilterChangedTrig2 == 1 then
kFilterFreqSum = gkFilterFreq

else
kFilterFreqSum = kFilterEnv
endif
else
kFilterFreqSum = kFilterEnv
endif

2.3 Cristalera

Cristalera uses the same schedkwhen granulation method to process live audio
input. This was achieved with four Csound instruments: one that is constantly
reading the dry input signal with the inch opcode and writing it to a channel with
the chnmix opcode, one instrument that triggers the grains with schedkwhen,
one instrument that reads the input signal and envelops it in a window when
triggered by the schedkwhen, and one instrument that mixes between the dry
and the affected audio with the ntrpol opcode. Here’s an excerpt of the code
showcasing the schedkwhen granulation method®:

5 The code was edited for the sake of size. A repository with the full source code can
be found here: https://github.com/CaioMJ/Cristalera

https://github.com/CaioMJ/Cristalera

Developing and Distributing Plugins with Cabbage 5

CRISTALERA cious v Save‘ Delete‘

by Caio M. Jiacomini

GRAINS
Mono Input Bypass
Windowing Sync v

Grain Duration =———{ff Grain Density =g
Grain Spread
RANDOMIZATION

Duration Range ——f@§ Density Range =@

Duration Rate =l Density Rate ~ =eff)

Grain Duration Grain Density
Frequency @ Frequency @

Depth @ Depth @

Fig. 3. Cristalera’s user interface.

instr GrainTrigger

...
kDurTotal limit kDur + kDurVar + kLfoDur , 0.01, 0.9
...

kDensityTotal limit kDensity + kDensityVar + kLfoDensity, 0.1, 80
kTrigger metro kDensityTotal
schedkwhen kTrigger, 0, O, "Grains", O, kDurTotal
endin
instr Grains
aSig chnget "DrySignalSum"
iWfn = chnget:i("WindowingSelection")
iBalance = 1 - p3
kWindowIndex line 0O, p3, 1
kWindowEnv table kWindowIndex, iWfn, 1
aWindowEnv interp kWindowEnv
aSig *= (aWindowEnv * iBalance)
...
aGrainL, aGrainR pan2 aSig, .5 + iRandomPan
chnmix aGrainL, "GrainSignalL"
chnmix aGrainR, "GrainSignalR"
endin

3 Distribution: Issues and Succeses

It was always my thought that these tools might be useful to others. To share
them, I decided to use the itch.io storefront, a platform focused on distribut-

6 Caio M. Jiacomini

ing independent video games but flexible enough to support the distribution of
software, allowing developers to host their products for free and determine the
percentage of their sales that goes back to the website. I opted to distribute
my plugins in a “pay-what-you-want” model with a suggested donation amount.
This allowed users to download and use them for free, with the option of finan-
cially supporting my work if they used and liked it.

While most people had no trouble setting up my plugins, I received a good
number of inquiries from users who had issues running them, reporting problems
that I had no idea how to solve because I don’t currently own a version of the
operating system they were using, so be aware you might need to spend some
time doing customer support if you decide to distribute your plugins. Another
issue, particularly with distribution over itch.io, has to do with the fact that
platform sometimes charged duplicate payments. Because of this, I spent a lot
time scrutinizing every transaction to refund accidental duplicated payments.
Be aware that some sites that might seem easier to use initially could add an
extra layer of demand due to issues like this.

However, the positive responses I got from users far overwhelms those frustra-
tions. I've had interactions with people from all over the world writing me about
how useful my plugins are, small audio blogs featuring my work with a write up,
and strangers in forums and discord servers recommending them to other people.
Despite being the first one I developed, Vendaval has been my most successful
one yet, to my surprise. It’s my most downloaded plugin, currently sitting at
4,180 downloads, as well as my highest grossing one. I thought the more refined
and versatile Granulera would be my most successful one, but people ended up
flocking to the simpler Vendaval, so don’t underestimate creating simple plugins
that excel at one super specific function.

4 Final Remarks and Next Steps

Csound and Cabbage have opened new possibilities for me that I would never
have imagined otherwise. Designing my own plugins has been incredibly reward-
ing, and using them in my own work has lead to new and fulfilling aesthetic
directions. Seeing others being excited about the tools I developed has also been
incredible.

For next steps, I am currently planning on updating Vendaval to have multi-
ple instances of each module with independent controls, allowing users to create
more complex soundscapes within a single instance of the plugin. I'm also cur-
rently working on implementing those plugins in Unity with the CsoundUnity
wrapper, inspiring new sets of works and tools that I am sharing at my college.”

71 currently work as a film and video game scoring tutor for my college and aim to
push CsoundUnity as a tool within the department.

Developing and Distributing Plugins with Cabbage 7
References

Heintz, J. et al.: The Csound FLOSS Manual, https://flossmanual.csound. com
Cabbage website: https://cabbageaudio.com

Sinclair, J.: Principles of Game Audio And Sound Design. Routledge (2020).
Vendaval download link: https://caiojmini.itch.io/vendaval

Granulera download link: https://caiojmini.itch.io/granulera

Cristalera download link: https://caiojmini.itch.io/cristalera

S ok Wi

https://flossmanual.csound.com
https://cabbageaudio.com
https://caiojmini.itch.io/vendaval
https://caiojmini.itch.io/granulera
https://caiojmini.itch.io/cristalera

	Developing Cabbage Plugins For Composition and Sound Design and Sharing Them Online
	The Story Behind Vendaval, Granulera, and Cristalera
	About the Plugins
	Vendaval
	Granulera
	Cristalera

	Distribution: Issues and Succeses
	Final Remarks and Next Steps

